	Q.P. Code: 20EC0404			R20		
	Reg. No:					
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: (AUTONOMOUS) B.Tech II Year I Semester Regular & Supplementary Examinations SIGNALS, SYSTEMS AND RANDOM PROCESSES (Electronics and Communication Engineering)	PUTTUI March-2	R 2023	d		
	Time: 3 hours	Max. M	larks: 6	0		
1	(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I a Find whether the following signals are periodic or not? If periodic determine the	C01	L3	6M		
	 fundamental Period. (i) sin (12πt) (ii) sin (10t+1)+ 2cos (5t-2) (iii) e^{i4πt} b Define and Explain the Following with an example. (i) Energy and Power Signals (ii) Even and Odd Signals 	CO2	L2	6M		
2	a Define the following Systems with an example (i) Static and dynamic. (ii) Causal and Non-causal	C01	L2	6M		
	 b Interpret via testing whether the following system is Static or Dynamic, Linear or Non-Linear, Time Invariant or Time Variant, Causal or No causal and Stable or Unstable. y(t)=at² x(t)+bt x(t-4) 	CO2	L4	6M		
3	Develop the Exponential Fourier Series for the given signal below.	CO3	L6	12M		
4	OR a Define Fourier transform and Evaluate the Fourier transform of $x(t) = e^{-at} u(t)$		L1	6M		
	b List the properties of Continuous time Fourier transform and State & prove the Time shifting property of Continuous time Fourier transform UNIT-III	CO3	L5	6M		
5	a Define linear time invariant and linear time variant system with necessary equations.	CO4	L1	6M		
	b Define convolution and develop the convolution of the following signals $x_1(t) = e^{-3t}u(t)$ and $x_2(t) = u(t)$	CO4	L6	6M		
6	• Define Auto correlation and list its properties	CO4	Τ1	<u>AM</u>		
U	b State and prove following properties of Auto correlation function. (i) $R_{XX}(-\tau) = R_{XX}(\tau)$ (ii) $R_{XX}(0) = E[X^{2}(t)]$	CO4 CO4	LI L5	6M		
	UNIT-IV					
7	 a Describe the Laplace domain analysis and list its properties b Find the Laplace transforms and ROC for the following signals. (i) x(t)=e^{-5t} u(t-1) (ii) x(t)=e^{-a t} 	CO5 CO5	L2 L3	6M 6M		

	Q.P. Code: 20EC0404	R	20	
	OR			
8	a Define the following with examples. (i) Probability (ii) Sample space (iii) Mutually exclusive events.	CO6	L1	6M
	b Let X is a continuous random variable with density function $f_{X}(x) = \begin{cases} x/9+k & 0 < x < 6 \\ 0 & 0 \end{cases}$ Otherwise	CO6	L3	6 M
	(i) Find 'k' (ii) Find $p[2 \le x \le 5]$ UNIT-V			
9	a Define and Differentiate the Distribution and Density functions of a Random Process.	CO6	L2	6M
	b Define and explain Stationary and Statistical Independence of Random process.	CO6	L3	6M
	ÔR			
10	a Prove that the Power Spectral Density of the derivative $X(t)$ is equal to ω^2 times the Power Spectral Density of $Sxx(\omega)$.	CO6	L3	6M
	b Show that the autocorrelation function of a stationary random process is an even function of τ .	CO6	L2	6M

*** END ***

 a Define France transform and Evaluate the Fourier transform of x(t) + e⁻⁴ u(t)
 11
 64

 b List the printenies of Continuous time Fourier transform of x(t) + e⁻⁴ u(t)
 11
 64

 b List the printenies of Continuous time Fourier transform and State & grove the CO1
 15
 64

 a time shutting property of Continuous time Fourier transform
 11
 64

 a time shutting property of Continuous time fourier transform
 11
 64

 a time shutting property of Continuous time fourier transform
 15
 64

 a time shutting property of Continuous time fourier time sector with meccaning CO1
 15
 64

 a time shutting property of Continuous time for time variant system with meccaning CO2
 14
 64

 a time of time state of the tothology system
 64
 64
 64

 b Define exercipation and develop the convolution of the tothology system
 64
 64
 64

 s (f) - c⁻⁵ u(g) got type (g) - g(f)
 64
 64
 64
 64

 s (f) - c⁻⁵ u(g) got type (g) - g(f)
 64
 64
 64
 64

 s (f) - c⁻⁵ u(g) got type (g) - g(f)
 64
 64
 64
 64

 s (f) - c⁻⁵ u(g) got type (g) - g(g)
 64
 64
 64
 64

(i) Rest-1) Rest(i)
 (ii) Rest(-1) Rest(i)
 (iii) Rest(-1) Rest(i)
 (iii) Rest(-1) Rest(i)
 (iii) Rest(-1) Rest(-1)
 (iii) Rest(-1) Rest(-1)
 (iii) Rest(-1) Rest(-1)
 (iii) Rest(-1) Rest(-1)
 (iii) Rest(-1)
 (iiii) Rest(-1)
 (iii) Res(-1)
 (iii) Res